首页> 外文OA文献 >Autonomous Trajectory Planning by Convex Optimization
【2h】

Autonomous Trajectory Planning by Convex Optimization

机译:凸优化的自主轨迹规划

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this dissertation is to use second-order cone programming (SOCP) for autonomous trajectory planning of optimal control problems arisen from aerospace applications. Rendezvous and proximity operations (RPO) of spacecraft in any general orbit include various constraints on acquisition of docking axis point, approach corridor, plume impingement inhibition, relative velocity, and rate of change of thrust. By a lossless relaxation technique, this highly constrained RPO problem (non-convex) is transformed into a relaxed problem the solution of which is proven to be the same as that of the original problem. Then a novel successive approximation method, forming a sequence of subproblems with linear and time-varying dynamics, is applied to solve the relaxed problem. Each subproblem is a SOCP problem which can be solved by state-of-the-art primal-dual interior point method. Constraints on collision avoidance, or more generally concave inequality state constraints, from any aerospace application also make a problem non-convex. A successive linearization method is employed to linearize the concave inequality constraints. It is proven that the successive solutions from this method globally converge to the solution of the original problem and the converged solution has no conservativeness. Further non-convex constraints include nonlinear terminal constraints which are handled by first approximated with first-order expansions, and then compensated with second-order corrections to improve the robustness of the approach. The effectiveness of the methodology proposed in this dissertation is supported by various applications in highly constrained RPO, finite-thrust orbital transfers, and optimal launch ascent.
机译:本文的目的是将二阶锥规划(SOCP)用于航空航天应用中出现的最优控制问题的自主轨迹规划。在任何一般轨道上,航天器的交会和接近操作(RPO)都包括在对接轴点,接近走廊,羽流撞击抑制,相对速度和推力变化率的获取方面的各种约束。通过无损松弛技术,该高度受限的RPO问题(非凸)被转化为松弛问题,其解决方案被证明与原始问题相同。然后,采用新颖的逐次逼近方法,形成具有线性和时变动力学的子问题序列,以解决松弛问题。每个子问题都是一个SOCP问题,可以通过最先进的原始对偶内点方法解决。来自任何航空航天应用的避免碰撞的约束或更普遍的凹面不等式状态约束也使问题不凸。采用连续线性化方法来线性化凹不等式约束。证明了该方法的后续解在全局收敛到原始问题的解,并且收敛的解没有保守性。进一步的非凸约束包括非线性终端约束,该约束首先通过用一阶展开近似来处理,然后用二阶校正进行补偿以提高方法的鲁棒性。本文提出的方法的有效性受到高度约束的RPO,有限推力轨道转移和最佳发射升程的各种应用的支持。

著录项

  • 作者

    Liu, Xinfu;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号